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SUMMARY

Marr’s theory of the cerebellar cortex as an associative learning device is one of the best examples of a
theory that directly relates the function of a neural system to its neural structure. However, although he
assigned a precise function to each of the identified cell types of the cerebellar cortex, many of the crucial
aspects of the implementation of his theory remained unspecified. We attempted to resolve these
difficulties by constructing a computer simulation which contained a direct representation of the
13000 mossy fibres and the 200000 granule cells associated with a single Purkinje cell of the cerebellar
cortex, together with the supporting Golgi, basket and stellate cells. In this paper we present a detailed
explanation of Marr’s theory based upon an analogy between Marr’s cerebellar model and an abstract
model called the associative net. Although some of Marr’s assumptions contravene neuroanatomical
findings, we found that in general terms his conclusion that each Purkinje cell can learn to respond to a
large number of different patterns of activity in the mossy fibres is substantially correct. However, we
found that this system has a lower capacity and acts more stochastically than he envisaged. The
biologically realistic simulated structure that we designed can be used to assess the computational
capabilities of other network theories of the cerebellum.

1. INTRODUCTION learning of motor coordination (Ito 1984; Gilman et

al. 1981).
The cerebellum is a part of the brain that is thought to Although the gross function of the cerebellum is
be involved in motor control. It has long been held, as understood, there is no consensus on how it achieves
a result of lesion studies, that it is implicated in the this function. Its regular structure, which has under-
Phil. Trans. R. Soc. Lond. B (1992) 336, 239-257 © 1992 The Royal Society and the authors
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gone much detailed neuroanatomical investigation,
provides many hints. There are four main schools of
thought: the cerebellum either acts as a pattern
associator (see, for example, Marr 1969; Albus 1971;
Gilbert 1974), as a device for mapping between
vectors (the tensor network theory of Pellionisz &
Llinas (1982), described also in Churchland (1986)),
as a biological timing device (Braitenberg & Onesto
1961), or as part of a circuit to implement classical
conditioning (Thompson 1990).

Most theories of the cerebellum have been formu-
lated at the algorithmic level; that is, mathematical
equations are set up to simulate the action of the
various cell types, without being directly subject to the
constraints of the neuroanatomy. One such theory is
due to the late David Marr (1969). He proposed that
cach output cell of the cerebellum controls an elemen-
tal movement of the body in response to the specific
contexts in which the movement occurs; and that a
process of associating these contexts with movement
commands takes place. Although his proposed imple-
mentation was spelled out in much detail, it remains
essentially a mathematical model and very few physi-
cal constraints were used. He did, however, suggest a
ncurobiological interpretation for the constituent ele-
ments of his theory, and he identified a particular type
of synapse as constituting the modifiable element. The
theory of Albus (1971) ascribes a similar role of
pattern association to the cerebellum, but by means of
a slightly different mechanism. However, to many
people these two theories are identical, and they
constitute the ‘Marr-Albus’ theory (Ito 1984) of the
cerebellum.

Given that the cerebellar cortex has the most
regular anatomy of any brain region and that there is
a wealth of structural information available, we
decided that it would be possible to construct an
accurate full-scale model of a small part of the
cercbellum that could be used to test the computa-
tional validity of theories of the cerebellum. We
focused on Marr’s theory because we felt it to be
computationally the most tractable.

Our goal was to construct a computer model of the
cells and connections influencing a single output cell
that would embody as much of the anatomical
structure as possible. Besides being useful as a tool to
investigate the feasibility and performance of Marr’s
theory, the simulated structure would be also useful as
a model of the cerebellum in its own right that could
be adapted to test other theories.

The project involved a number of steps.

1. Collation and evaluation of current neuroana-
tomical data to establish the values of the parameters
needed to construct the model.

2. Construction of a full-scale computer-simulated
model of the basic cerebellar unit as identified by
Marr. This unit comprises a population of some 13 000
mossy fibres that make synapses with 200000 granule
cells which contact one Purkinje (output) cell,
together with a smaller number of supporting cells
(Golgi cells, and basket and stellate cells).

3. Use of the simulated structure to test Marr’s

Phil. Trans. R. Soc. Lond. B (1992)

claims for his theory: that the cells of the cerebellum
can interact in the way he outlined to efficiently
assoclate input (mossy fibre) patterns with output
(Purkinje cell) patterns, and particularly that each
output cell can learn to respond to approximately 200
different contexts. Marr recognized that simulation
would constitute the most direct method of testing,
but in his day it was impossible to simulate a full-size
system.

This paper makes three main contributions.

1. Marr’s own paper is not easy to read, and we
provide what we consider to be a clear, step-by-step
explanation of it.

2. Itdescribes how a computer simulation of part of
the cerebellum can be constructed. This may seem a
straightforward task, but in reality it is still difficult to
obtain values for all the key anatomical parameters. It
is also not always obvious how to generate, in the
simulated model, the anatomical structure observed in
real-life.

3. Using our model of the cerebellum, we were able
to test Marr’s theory by forcing his sometimes rather
vague ideas to be integrated with the modelled
neuroanatomy. In the process of implementing the
theory, we identified several anomalies which we had
to resolve, leading to changes in the basic model.
Marr’s estimate that each Purkinje cell can learn to
respond to 200 different contexts is found to be of the
right order of magnitude, even though some of the
assumptions he used in obtaining that figure are
shown to be incorrect.

The plan of the paper is as follows. In § 2, a brief
survey of the anatomy of the cerebellum is given.
Some associative memory theory is then described in
§3 and is used to explain Marr’s idcas about the
functioning of the cercbellum. In § 4 the steps taken to
establish the parameters for the simulated model are
given, together with a description of how it was
constructed and the differences between it and Marr’s
original model. In § 5 we describe the simulation tests
we carried out. The results are then discussed in § 6.

2. THE CEREBELLUM
(a) The function of the cerebellum

The cerebellum is a part of the brain that is
involved in motor control. It is not essential to motor
control, but it enables greater rapidity, smoothness,
precision and complexity of movements. Animals and
humans with damaged or destroyed cerebella are still
able to perform movements, but these movements will
be slow, inexact and uncoordinated (Gilman e/ al.
1981; Carlson 1977). The cerebellum seems to be
responsible for the activation of large sets of sometimes
spatially distinct muscles in a quick, well-timed and
synchronized sequence. Humans are born with no
capacity to perform many complex actions such as
walking, writing and speaking, but can acquire the
ability to perform them after extended practice. This
process of acquisition, or learning, is thought to take


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Cerebellum: simulation and Marr’s theory ~'T. Tyrrell and D. Willshaw 241

Figure 1. Cerebellar neurons. Pu = Purkinje cell, Go= Golgi
cell, Gr=granule cell, Pa=parallel fibre, St=stellate cell,
Ba = basket cell, Cl=climbing fibre and Mo=mossy fibre.
From Llinas (1975). Copyright acknowledged to Scientific
American Inc.

place in the cerebellum. The cerebellum is also
involved with movements that are even more auto-
matic such as the maintenance of stance and posture,
and saccadic eye movements.

An example of the kind of movement in which the
cerebellum is involved is given in Carlson (1977):

For example, if you hold your arm straight out in front
of you, it is possible for you to move it rapidly so that
your hand describes a circle. Try this and move your
arm as rapidly as you can. You will note that in doing
so, you engage not only the muscles of your arm,
shoulder and neck, but also those of your trunk and
(especially if you stand) your legs. A phenomenal
number of muscles are called into action, and at
precisely the correct time. Just considering the arm
movement alone, various muscles must begin and end
their contractions at precisely the correct time in order
to produce a smooth motion (after all a single muscle
cannot produce a circular motion at the end of the
arm).

In computational terms, the cerebellum can be seen
as a device that relieves the cerebral cortex of the
burden of conscious control of movements, freeing its
computational capacity for other tasks. It also enables
a more complex and coordinated control of the
muscles than would be available with the cerebral
cortex alone.

Finally, it needs to be appreciated that the vast
majority of complex movements that we are able to
perform have only been acquired after years of
practice and experience, and are not hard-wired.
During this learning there is a gradual transformation

Phil. Trans. R. Soc. Lond. B (1992)

from total conscious cerebral control to an automatic
unconscious execution of the movements involving the
cerebellum.

(b) The structure of the cerebellum

There are two sets of inputs to the cerebellum,
through the mossy fibres and through the climbing
fibres. The mossy fibres are thought to relay informa-
tion about the state of the body (positions of limbs,
rotations of joints, resistances to rotations, etc.). The
climbing fibres relay information from the inferior
olive, and this information was thought by Marr to be
the product of higher-level processing in the cerebral
cortex. A third type of input to the cerebellum,
through the aminergic fibres, has been discovered
since Marr’s time and so was not included in his
model. This third type of input may signal reward,
and could be incorporated fairly easily into Marr’s
model (Gilbert 1974) although it will not be consi-
dered here.

The inhibitory Purkinje cells are the only output
cells of the cerebellum. Each Purkinje cell axon affects
the contraction of an individual muscle, or group of
muscles, in the body. The Purkinje cells are contacted
directly by the climbing fibres. They are also con-
tacted by the parallel fibres, the axons of the granule
cells. The granule cells themselves are innervated by
the mossy fibres, the second set of inputs to the
cerebellum.

Besides the granule cells, the cerebellum has three
other types of interneuron. These are the Golgi cells,
the basket cells and the stellate cells.

An overview of the neuroanatomy follows, which
should be read in conjunction with figures 1-7.

(1) Purkinge cells

Each Purkinje cell has a very flat and fan-like two-
dimensional dendritic tree which intercepts and makes
synapses with a large number (¢a. 200 000) of parallel
fibres (the axons of the granule cells (see figure 5)). It
also receives synaptic contacts from several basket and
stellate cells and a single climbing fibre.

(i) Climbing fibres

Each Purkinje cell is innervated by just one climb-
ing fibre which makes extensive contacts on the
dendritic tree of that Purkinje cell (see figure 5). The
contacts are sufficiently extensive that firing of
the climbing fibre automatically induces firing of the
Purkinje cell. A particular climbing fibre may inner-
vate more than one Purkinje cell.

(iii) Mossy Fibres

The mossy fibres travel ‘underneath’ the cerebellar
cortex proper, with each fibre sending out an oc-
casional branch which ‘ascends’ to the cortex and then
branches further to form a cluster of on average
7.5 axon terminals. Each of these axon terminals has
contacts with, on average, 20 granule cell dendrites so
that each mossy fibre cluster of axon terminals
contacts of the order of 150 granule cells.
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Figure 2. Cerebellar necurons. From Baron (1987). Copyright acknowledged to Lawrence Erlbaum Associates Ltd.

CI

Figure 3. Cerebellar neurons. Mo =mossy fibre, Ba = basket
cell, St=stellate cell, Cl=climbing fibre and Go= Golgi
cell. From Eccles et al. (1967). Copyright acknowledged to
Springer—Verlag.

(iv) Granule cells

The axons of the granule cells (the parallel fibres)
are aligned perpendicularly to the flat dendritic trees
of the Purkinje cells. This arrangement of parallel
fibres and Purkinje cells provides the greatest possible
number of parallel fibre to Purkinje cell contacts per
unit volume, and also has the effect that very few
parallel fibres contact an individual Purkinje cell more
than once. Each granule cell is contacted by on
average 4.5 mossy fibres.

(v) Golgi cells

They have two dendritic systems, one which
ascends to take input from the parallel fibres and the

Phil. Trans. R. Soc. Lond. B (1992)

other which descends to take input from the mossy
fibres. Their axons branch profusely and make many
inhibitory synaptic connections with granule cell
dendrites (see figure 6).

(vi) Basket and stellate cells

These two types of neuron lie at different levels in
the cerebellar cortex, and they make inhibitory con-
nections with different parts of the Purkinje cell. Both
basket and stellate cells are innervated by the same
source (parallel fibres) and send their axons to the
same destination (Purkinje cells). They are generally
assumed to be functionally equivalent (see figure 7).

3. MARR’S THEORY OF THE CEREBELLUM

In his “Theory of cerebellar cortex’ Marr (1969)
addressed the problem, described in § I, of how the
gross function of the cerebellum might be achieved by
its neural machinery. This section presents an expla-
nation of that theory (which is the first of the three
contributions of our paper mentioned in § 1).

Marr suggested that the cerebellum learns the
unconscious execution of movement through pattern
association. The patterns being associated are those of
proprioceptive information (state of the body) in the
input axons, the mossy fibres, with those of motor
control (activations of muscles) in the output neurons,
the Purkinje cells. During learning, the conscious
instructions as to which outputs to associate with the
given mossy fibre context are carried along the
climbing fibres to the appropriate Purkinje cells. After
learning, the contexts alone will activate the relevant
output patterns, and the execution of movements can
be carried out automatically with no guidance from
the cerebral cortex.
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Figure 4. Schematic diagram of the arrangement of neurons in the cerebellum.

(a) The associative net

As a way of introducing Marr’s theory, we describe
a more abstract formalization of associative memory,
the associative net (aN), also known variously as the
associative matrix, correlation matrix, or Willshaw
Net (Willshaw et al. 1969). The associative net is a
simple computational device which acts as a pattern
associator. Marr’s whole theory can be viewed as an
implementation of the associative net in the cerebel-
lum (although he did not express it in these terms).

There are a set of input lines and a set of output
lines with a set of binary-valued modifiable synapses
at their intersections. Each input and each output line
can be set to either a high (excited) or a low state.

< Y5 Purkinje cell dendritic
4 b / arborization

Mg  — Purkinje cell body

/ Purkinje cell axon
)
(

climbing fibre

Tigure 5. Intertwining of climbing fibre around extensive
dendritic arborization of Purkinje cell.

Phil. Trans. R. Soc. Lond. B (1992)

The AN is able to form links or associations between
patterns in its input and patterns in its output. On
subsequent re-presentations of a stored input pattern,
the net is able to make use of the associations stored to
respond with the corresponding output pattern. The
net therefore has two states: learning mode when it is
forming associations, and discriminating mode when it
is deciding whether or not to respond to an input
pattern, and, if so, with what output pattern.

It is able to carry out this function in the following
way.

1. Imtial state. Each input line has a synapse with

4_7 ascending dendrites
y

descending dendrites

descending axons

Figure 6. Structure of the Golgi cell. From Albus (1971).
Copyright acknowledged to Elsevier Science Publishers Ltd.
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‘baskets’ that form around
the Purkinje cell bodies

Figure 7. Structure of the basket and stellate cells.

each output line as shown. These synapses are all OFF
initially (see figure 8a).

2. Learning mode. When a pattern on the input lines
is presented together with the pattern on the output
lines with which it is to be associated, all the synapses
between excited input lines and excited output lines
get switched ON (see figure 8b).

3. Discrimination mode. When the net is in discrimi-
nation mode, each output line has to decide whether
or not it should be active in response to the given
input pattern. It does this by summing the excitation

(a)
I
N
P
U
T
L
I
N
E
S
OUTPUT LINES
(c)
I 0
N (T
P
U 0
T 0
L 1
%\I 1
E 0
S 0
00 3 3 000 3
threshold = 3 i
00110001
OUTPUT LINES

coming through its previously modified synapses
(thereby counting the number of modified synapses on
activated input lines) and comparing that number
with the sum of excitation in all the input lines (the
number of activated input lines). If the two numbers
are equal, then the output line is made active. When a
learned pattern is later re-presented in the input lines,
only those output lines that were part of the output
pattern originally associated with it will be activated
(see figure 8¢). When an unlearned pattern is pre-
sented to the network, provided not too many

(®)

3
HHH

wumzZ=r ez
O o~ -0 0o ~ o

00110001
OUTPUT LINES

(4)

uEFvERED!

vhZ—=E Sz
—_0 O = O = O O

threshold =3

000000O0GO0OUO
OUTPUT LINES

Figure 8. Operation of the associative net: (a) initial state; (b) learning to associate an input pattern with an output
pattern; (¢) subsequently presenting a learned pattern; (d) subsequently presenting an unlearned pattern.

Phil. Trans. R. Soc. Lond. B (1992)
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synapses have been turned ON by other associations,
no output lines will be active and so there will be no
response from the system (see figure 84).

(b) The cerebellum as an associative net

The following comparisons can be made between
components of the associative net and the cells of the
cerebellum: (i) the parallel fibres are the input lines of
the an; (ii) the Purkinje cells are the output lines; (iii)
the synapses between parallel fibres and Purkinje cells
are the synapses in the an; (iv) the climbing fibres
signal whether the net should be in learning or
discriminating mode (i.e. they tell each output line
(Purkinje cell) whether it should be active in the given
input pattern); and (v) the basket and stellate cells
perform the thresholding operation on the output
lines, as explained below.

To implement the thresholding operation biologi-
cally, information about how many parallel fibres are
activated and have modified synapses is required. This
information is available to the output cell directly,
through the depolarizing effect that they can be
assumed to have on the Purkinje cell dendrites.
However, the total number of activated parallel fibres,
which is also required, is unknown. Marr assumes that
this information is provided by the basket and stellate
cells which sample the parallel fibre activity and
provide an inhibitory signal which is proportional to
the total excitation in the parallel fibres. There will be
a competition between the excitation received through
the parallel fibres with modified synapses and the
inhibition received through the basket and stellate
cells. This competition will result in the Purkinje cell
(output line) firing only when it is part of an output
pattern associated with the input pattern. The imple-
mentation of this is described in § 4.

(¢) The improved associative net

The analogy with the associative net, as developed
so far, is not sufficient to explain the whole anatomy of
the cerebellar cortex (as described in § 25). The theory
still needs to account for the existence of the granule
cells (why do the mossy fibres not synapse directly
onto the Purkinje cells, instead of indirectly via the
granule cells?), the complex nature of the connections
between the mossy fibres and the granule cells, and
the existence of the Golgi cells. As will be explained
below, these provide the machinery for solving three
specific problems in the associative net scheme.

1. Saturation. The major problem is that the capa-
city is severely limited. As more and more associations
are made, more and more of the synapses become
modified. As the proportion of modified synapses
increases then the probability of the net making
incorrect responses to unlearned input patterns (i.e.
producing false positives) also increases. This pheno-
menon is known as saturation (see figure 9). Satu-
ration imposes a limit on the capacity of the network.
As more associations are learned, the performance of
the system gradually degrades.

Phil. Trans. R. Soc. Lond. B (1992)
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Figure 9. Saturation in the associative net: (@) turning on
more synapses with more associations; () two false positives
when presenting an unlearned pattern.

2. Subsets. A problem with the associative net as
applied to this case is that it responds to subsets of
learned contexts as well as to the learned contexts
themselves (see figure 10). Although in many other
cases this phenomenon is a desirable property of
associative memories, it is our feeling that for this task
it is better to construct the net so that it only responds
to a subset if that subset has been learned explicitly.
For example, if the cerebellum had learned an
association between mossy fibres signalling the three
states ‘mouth open’, ‘hand holding cup’, and ‘hand
near mouth’ and a Purkinje cell contributing to the
action ‘turn hand to pour contents of cup into mouth’
then it would be undesirable to trigger the response
for a subset of the mossy fibre pattern (e.g. just ‘mouth
open’ and ‘hand holding cup’ alone).

3. Separating similar patterns with biological thresholding.
The anatomy is not so precise and exact that each
basket or stellate cell makes one, and only one, contact
with each parallel fibre, but rather each cell has
sparsely distributed sets of dendrites which can only
sample the activity in the parallel fibres (see figure 7).
These cells therefore cannot provide an exact measure
of the input activity. To make certain that a Purkinje
cell responds to all learned patterns it is necessary to
reduce the threshold on the number of modified
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threshold = 2
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OUTPUT LINES

Figure 10. Responding to a subset in the associative net.

synapses on activated input lines that must be
exceeded for a Purkinje cell to fire. This produces a
problem of confusing similar input contexts. Since
slightly lower thresholds are required to accept all
learned contexts, it will become more likely that some
unlearned contexts which are very similar to learned
contexts will be recognized as well.

How can these problems be overcome; or at least their
effects be reduced? To solve the first problem, the
proportion of the input neurons that are excited per
pattern needs to be reduced. To achieve this reduction
it is obviously not sensible to just turn off the activity
in some of the input lines since then different patterns
would become identical. A better idea is to transform
the input into a much larger set of neurons. A similar
number of neurons in the larger set can be excited
(preserving information and therefore the ability to
discriminate between patterns), while at the same
time a smaller proportion of the input neurons will be
excited in the larger set (thus turning on a smaller
proportion of the synapses with each association and
thereby increasing the capacity of the net). This
scheme is shown in figure 11, with the method for
deciding the mapping between excited first layer
neurons and excited second layer neurons left at
present as a black box.

This transformation of inputs into a much larger set
will help with the second and third problems if it has

I —F

N

P

9]

T

L ;

I

N

E

S
00110001
OUTPUT LINES

Figure 11. Expanding the input of the associative net into a
larger size pattern, but with a similar number of excited
neurons.
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the following properties: (i) given that pattern A in
the first input layer produces pattern B in the second
layer, a subset of A must not produce a subset of B; (i1)
two similar first layer input patterns must be trans-
formed into patterns in the second layer that are less
similar.

The transformation therefore needs to be complex.
Just repeating the first layer pattern several times over
in the larger seccond layer pattern and then inhibiting
some lines would not help greatly with subset recogni-
tion and pattern separation.

(d) The cerebellum as an improved associative net

There is a need for an expansion of sufficient
complexity of the original input pattern into a pattern
in a larger set of input lines with a lower average
excitation. Here this need is linked to the existence of
the granule cells, the complicated mossy fibre to
granule cell connections and the Golgi cells.

There are approximately 13000 mossy fibres that
contact the approximately 200000 granule cells that
then synapse with one particular Purkinje cell (see
§ 4a). Thus there are about 15 times more granule
cells than mossy fibres for a particular Purkinje cell.
The mossy fibre to granule cell connections are shown
schematically in figure 4 and were discussed in § 2b.
Each granule cells is contacted by on average
4.5 mossy fibres.

Marr assumed that each mossy fibre to granule cell
synapsc is unmodifiable and has unitary weight. Since
cach granule cell is contacted by more than one mossy
fibre, the fraction of granule cells receiving some
activation (a,) will exceed the fraction of activated
mossy fibres (a,). Marr proposed that the fraction a,
of active parallel fibres can be made less than a, by
means of the inhibition supplied by the Golgi cells. By
providing inhibition in proportion to the level of
granule cell activity that would result without inhibi-
tion, they are able to transform mossy fibre patterns of
widely different levels of activity into granule cell
patterns with roughly the same level. Marr suggested
that: (1) the Golgi cell descending dendrites, which are
contacted by the mossy fibres, provide fast prediction
of rapidly changing granule cell activity (the uninhi-
bited granule cell activity would be proportional to
the mossy fibre activity), and (ii) the Golgi cell
ascending dendrites, which are contacted by the
parallel fibres, provide more accurate estimates of
the actual granule cell activity for fine-tuning of the
inhibition when the mossy fibre input is more stable.
The assumed effect of Golgi cell inhibition is shown in
figure 12.

Because each granule cell is excited by 1-7 mossy
fibres (i.e. each granule cell samples a subsct or, as
Marr called it, a codon, of the mossy fibres) and is also
inhibited by Golgi cells, the transformation between
first and second layers is sufficiently complex to allow
for rejection of subsets and pattern separation (as
demonstrated in § 5). Changing of a few mossy fibre
inputs will affect the excitation of many granule cells,
and for many of those it will make the difference as to
whether or not they survive the Golgi cell inhibition.
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Figure 12. Assumed activity in the granule cells with and
without Golgi cell inhibition. Larger circles correspond to
higher excitation.

1. Saturation. To lessen the effect of saturation, the
fraction o, of granule cells active in any input pattern
must be less than the fraction o, for the mossy fibres.

2. Preservation of information. To ensure that the
number of possible granule cell patterns be no less
than the number of possible mossy fibre patterns, a,
must be large enough to satisfy

%e(In o) 2 (N No) (I atye),

where N,, N, are the numbers of mossy fibres and
granule cells innervating one Purkinje cell.

3. Paitern separation. The parameter that is crucial in
determining whether an output cell should fire is the
ratio of the number of activated input lines onto
modified synapses to the total number of activated
input lines. Therefore an appropriate measure of the
separation between two patterns is the number of
fibres at which activity differs divided by the mean
number of active fibres, called 6 here. For two
patterns of length N in which the probability of a
component having value 1 is o, 6 equals 2 (1 —a), a
decreasing function of «. Therefore, to obtain
increased pattern separation in the granule cell layer
as compared to the mossy fibre layer,

Oy < Oy

Note that this constraint is equivalent to the condition
for reducing the effect of saturation.

These two constraints provide upper and lower
bounds on the value of a,.

To summarize, the action of the mossy fibre to
granule cell transformation has certain computational
advantages, which are bought at the cost of the more
elaborate machinery required. In terms of the three
problems described in § 3¢, these are: (i) saturation:
having a lower level of activity in the transformed
input patterns allows more associations to be stored
reliably; (ii) subsets: because all transformed patterns

Phil. Trans. R. Soc. Lond. B (1992)

will have roughly the same level of activity (regardless
of a,,) and the transformation is complex, the pattern
into which a mossy fibre pattern A will be transformed
will be completely different from that into which a
subset of A is transformed; (iii) pattern separation:
because the transformation is complex, the granule
cell patterns will be more separated than the mossy
fibre patterns provided that o, is less than o,.

4. CONSTRUCTION OF THE SIMULATION

This section presents the second of the three contribu-
tions of this paper mentioned in §1, i.e. how we
constructed an anatomically realistic simulation of
part of the cerebellar cortex.

Owing to the large number of cells in the cerebel-
lum, we were restricted to modelling only a small
section of it: that which contains all the cells forming
the two pathways (mossy fibre and climbing fibre) to
a single output (Purkinje) neuron. Showing that each
output neuron can learn when to fire and when not to
fire is sufficient to demonstrate that the network as a
whole can learn to produce the correct output pat-
terns for the respective input patterns; that is, it can
learn to associate patterns and recall the associations
correctly. This follows the approach of Marr, who
assumed that the basic unit of the cerebellum is a
Purkinje cell together with all the cells contacting it.
We give here details of how the model was con-
structed, and the results we obtained with it are
discussed in § 5.

The following items are required for a complete
specification of the model (Lippmann, 1987): (i) the
net topology (i.e. the numbers of cells and the
connections between them); (ii) the node character-
istics (i.e. the function of'its input that each cell uses to
determine its response); and (iii) the training or
learning rules (i.e. the rules governing changes in the
synaptic weights).

(a) Net topology

Most of the work in constructing the simulation
involved producing the correct connectivity between
the cells. This is a complex process, and only a short
description of how it was done can be given here.

Although the cerebellum has a fairly regular struc-
ture compared with other parts of the brain, there is
considerable variation in the distribution of dendrites,
numbers of dendrites, lengths of axons, numbers of
connections, etc. among cells of the same type.
Nothing is known rigidly or exactly. This lack of
certainty was represented in the model by incorporat-
ing randomness into the numbers of dendrites, the
positions of dendrites around the cell body, and so on.

Owing to the large number of parameters in the
simulation whose values are only sketchily known,
exploration of all regions of the parameter space
would have been impossible and so we decided to
explore only the most favourable part of parameter
space. We looked at the different estimates of the
anatomical measurements that have been proposed
and chose those which were most likely to allow the
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simulation to work. It should be stressed that much of
the anatomical information we used is sketchy, and
that in many cases we had to make what we felt were
plausible assumptions. Because of these factors, the
simulation could only give us results of the nature,
‘what we know of the anatomy of the cerebellum is not
incompatible with the theory that . . ., rather than of
the nature, ‘the anatomy of the cerebellum can be
proven to implement . . .’

Although the schematic diagram of cerebellar struc-
ture in figure 4 attempts to portray the cerebellum in
two dimensions, in reality the granule cell bodies,
Golgi cell bodies, etc. are not arranged in lines, or
even in planes, but rather are positioned in three-
dimensional layers. One simplification we made was
that when generating cells and forming connections
between them, we replaced the layers that lie in three
dimensions by planes in two dimensions (figure 13).

As far as possible, we represented the function of
each type of cell as a computation carried out by
individual cells at the cellular level, rather than
treating all the cells of one type as a whole. The
exception was the sampling' by Golgi cells and by
basket or stellate cells ‘outside’ the model. The
processes from cells in both these classes extend a long
way outside the modelled area of the cerebellar cortex.
To model these connections explicitly would have
meant increasing the size of the simulation by a factor
of 20 or so (i.e. to about 4 x 108 granule cells). To
make the simulation tractable we modelled the effect
of the ‘external’ mossy fibres and granule cells sam-
pled by the Golgi and basket or stellate cells impli-
citly. This introduced an element of arbitrariness into
the simulation, in that we had to estimate how
different the external and internal excitations would
be, but this was unavoidable. We decided to use a
maximum of 59, diference between the average
excitations of internal and external cells.

The model was built up by generating granule cells
in a layer beneath the Purkinje cell, giving their axons
(the parallel fibres) random lengths, and then retain-
ing only those which were long enough to reach to the
Purkinje cell. The granule cells that remained were
each given a random number of dendritic termina-
tions positioned randomly around the cell body. A
layer of mossy fibres (all those that might contact the
relevant granule cells) was then generated. Each

plane onto which granule cell
dendrites and mossy fibre
axon terminals are projected

plane of granule cells

mossy fibre was given a random number of axon
terminals arranged around the cluster centre, each
terminal being a random distance away from the
centre. The mossy fibre to granule cell connections
were then formed by linking each granule cell dendri-
tic termination to the closest mossy fibre axon termi-
nal. Finally the Golgi cell bodies were randomly
positioned in a separate layer. They were given two
sets of dendritic terminations and one set of axon
terminals positioned randomly around the cell bodies.
These were then connected to the closest parallel
fibres, mossy fibre terminals and granule cell dendrites
respectively.

(i) Purkinge cell

The key parameters are the shape and dimensions
of the dendritic tree, about which there is little
disagreement (Eccles et al. 1967; Ito 1984). The
dendritic tree is a flat structure with a width of
250 pm (Eccles et al. 1967) which is oriented perpendi-
cularly to the large number of parallel fibres crossing
1t.

(i1) Granule cells

The key parameters are: (i) the length of the
parallel fibres traversing the Purkinje cells; (ii) the
number of granule cells innervating one Purkinje cell;
and (ii1) the number and dimensions of the granule
cell dendrites.

One figure for the number of granule cells innervat-
ing one Purkinje cell is 200000 (Eccles et al. 1967).
Fox et al. (1967) give a similar figure of 120 000. Some
estimates of parallel fibre lengths give a range from
2000 pm to 3000 pm (Eccles et al. 1967). Albus (1971)
estimates = 3000 pm. To obtain a plausible distribu-
tion of granule cells, we carried out the following
procedure.

We calculated the average spacing between granule
cells, which was that which would result if 200000
granule cells were distributed regularly within a
2500 pm x 250 pm rectangle (defined by the average
length of a parallel fibre and the extent of the Purkinje
cell dendritic tree assumed). This gave a value of
1.77 pm for the spacing.

To cater for the observed variation in parallel fibre
length we then arranged granule cells at this spacing
within a rectangle of 3000 pm x 250 pm (defined by

plane of Golgi cells

plane of
mossy fibres

Figure 13. Assuming planes rather than layers in order to form connections easily.

Phil. Trans. R. Soc. Lond. B (1992)
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the maximum length of a parallel fibre and the extent
of the Purkinje cell dendritic tree assumed).

Each of these granule cells was then given a parallel
fibre with a length randomly chosen in the range
2000-3000 pm, and those granule cells with a parallel
fibre that did not reach the Purkinje cell were
discarded.

By this procedure, approximately 200000 granule
cells reach the Purkinje cell with a spread of parallel
fibre lengths. Eccles et al. (1967) and Albus (1971)
assumed that almost all of these parallel fibres synapse
with the Purkinje cell. We made synaptic contacts
between every parallel fibre arriving at the Purkinje
cell.

As well as putting out an axon, each granule cell
puts out a number of short dendrites, claws, that
contact the mossy fibres in a plane. There is some
disagreement about the number and the length of the
claws. We assume here that both quantities are
randomly distributed. Following Marr, the number of
claws is assumed to be between one and seven, with an
average of 4.5 and the distance from the cell body to
each claw is randomly chosen in the range 0-30 pum,
and in a random direction.

(iil) Mossy fibres

The key parameters are: (i) the number of mossy
fibres; and (ii) the number and distribution of mossy
fibre axonal terminals in each cluster.

Marr uses various observations about divergence
and convergence at the mossy fibre to granule cell
interchange to estimate that approximately 6000
mossy fibres affect one Purkinje cell. He guesses that
this number will be increased to 7000 by edge
effects. We accounted for edge effects by assuming
that these 6000 mossy fibres are found within the
2500 pm x 250 pm rectangle, which gives a cell sepa-
ration of 10.2 pym assuming uniform spacing. The
mossy fibre terminals occur in clumps of some 20
rosettes per mossy fibre, each on a stalk (Eccles et al.
1967; Fox et al. 1967). Given that each axon terminal
from one mossy fibre is on a stalk of length 0-120 pm,
and the claw length is 0-30 pm, the area of space
containing mossy fibres that might influence the
granule cell population defined above (which were
assumed to originate from an enlarged rectangle) then
becomes enlarged by twice the stalk length and twice
the claw length to a rectangle of dimensions
3300 pm x 550 pm. The method of making contacts is
now to place both granule cell claws and mossy fibre
axon terminals in the same notional plane and join
each claw to the closest axon terminal. Mossy fibres
that make no contacts are then discarded. The effect
of these two factors (increasing due to edge effects and
discarding those making no contacts) is to increase the
size of the mossy fibre population from 6000 to 13 000.

(iv) The basket and stellate cells

The cells assumed by Marr to set Purkinje cell
thresholds are the off-beam cells (Eccles et al. 1967),
that sample activity remotely. Because of the long-
ranging dendrites of these off-beam basket and stellate
cells, they sample cells that are too distant for them to

Phil. Trans. R. Soc. Lond. B (1992)

be modelled explicitly. Given that P; is the average
activity of the parallel fibres internal to the model,
the external activity Py is calculated as
Pr=P;x (0.95+¢), where & is the average of two
random numbers in the range 0.0-0.10.

(v) Golgi cells

Marr’s specification of the parameters for the Golgi
cells is the most vague and disputable part of his
theory.

The key parameters are: (i) the number and
distribution of the Golgi cells and their morphology;
(i1) the number and distribution of the contacts made
by the ascending and descending dendritic trees; and
(iii) the number and distribution of the contacts made
by the axonal system.

(vi) The number and distribution of the Golgi cells and their
morphology

Marr took his interpretation of the Golgi cell’s
structure from Eccles et al. (1967), and so assumed
that the Golgi cells partition up the cerebellar cortex
(in the plane of the parallel fibres) into small,
contiguous, non-overlapping, tessellated, hexagonal
prisms (see figure 14). However, this account is not
only biologically implausible but inconsistent. Eccles et
al. (1967) took the diameter of the non-overlapping
hexagons to be 700 pm, but to be compatible with the
widely accepted figure of one Golgi cell per nine to ten
Purkinje cells, this figure would have to be nearer
200 pm.

In his related theory, Albus (1971) assumed Golgi
cells with roughly circular dendritic trees, with an
average overlap of nine Golgi cells at any point on the
cortex, and a diameter of & 600 pm (see figure 15). As
well as being more biologically plausible, the figures
used are consistent with one Golgi cell per nine to ten
Purkinje cells.

We calculated the diameter of the Golgi cell
dendritic tree as follows. Looking from above, the
average area of cortex occupied by a Purkinje cell is

\ . .
- ’
. (- ’\,_1-‘_;) 5 ' of Golgi region
cam SN \ Golgi cell
length, /] . body
(U VAR . -\
3mmy<o eyl et
/7 AN
17/ N
v/ \
’y '
0 stellate cell

Figure 14. Marr’s interpretation of the arrangement of Golgi
cells. From Eccles et al. (1967). Copyright acknowledged to
Springer-Verlag.
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Golgi cell body

Golgi arborization
boundaries

100 pm

Figure 15. Albus’s interpretation of the arrangement of
Golgi cells. From Albus (1967). Copyright acknowledged to
Elsevier Science Publishers Ltd.

(250 +50) pm x 9 pm, or 2700 um?, where 9 um is the
perpendicular distance from one Purkinje cell dendri-
tic sheet to another, and 50 um is the spacing between
the ends of two Purkinje dendritic spreads (Eccles et al.
1967). One Golgi cell per ten Purkinje cells thus
requires one Golgi cell per 27000 um? and so,
assuming that on average nine Golgi cells overlap
each point in the cortex, the area covered by each
Golgi cell is 243000 pum? This gives a diameter of
approximately 550 um. The positions of the Golgi cells
were generated by creating grid points 165 pm apart
(so as to provide an average of one Golgi cell per nine
to ten Purkinje cells) and then displacing the cells
from the grid positions by a random amount of up to
50 um. The dendritic and axonal terminations were
then each placed at a random direction from the cell
body of between 0 and 275 um (corresponding to a
diameter of 550 pm).

(vii) Contacts on the descending dendritic tree

Marr assumes that each Golgi cell has a 109,
chance of sampling each mossy fibre beneath it with at
least one of its dendrites; i.e. each mossy fibre has a
909, chance of not being sampled by this cell. We
calculated the total number of mossy fibre axon
terminals within a circle of radius 275 um to be
~17000. The average number of axon terminals per
cluster is taken as 3.757.

The number gdd of Golgi cell descending dendrites
needed so that each mossy fibre has a 109, chance of
getting sampled at least once is then given by the
equation

I 3.75 \ ¢4 1
Therefore

17 000
gdd ~ — 375 In(0.90) = 500. (2)

This figure is of the same order of magnitude as the
figure of 200 descending dendrites quoted by Pellio-

T To allow for the fact that the mossy fibre clusters are quite wide, it
is assumed that on average only half of the axon terminals of each
cluster will fall in the range of any particular Golgi cell.
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nisz & Szentagothai (Ito 1984). In the simulation,
each Golgi cell was given between 400 and 600
descending dendritic terminations at distances ran-
domly distributed between 0 and 275 um away from
the cell body. These were then connected to the
nearest mossy fibre axon terminal.

(viii) Contacts made by the Golgi cell axon

Albus assumes Golgi cells with 600 um diameter
axonal arborizations that inhibit 100 000 granule cells.
Marr, assuming smaller size axonal arborizations,
assumed that all the 4500 granule cells beneath a
Golgi cell are inhibited.

With a probabilistic distribution of axons, a very
large number of axons would be required for a high
probability of inhibition of all the granule cells. We
assumed the following.

1. The Golgi cell axon terminations are distributed
within a circle of radius equal to that of their dendritic
trees. There are 17000 mossy fibre axon terminals
(where the granule cell dendrites are contacted)
within that area.

2. Each Golgi cell axon termination makes contact
with one mossy fibre axon terminal, randomly chosen
within the extent of the Golgi axonal tree. The Golgi
cell terminal inhibits all the granule cell dendrites
which the mossy fibre terminal contacts.

3. Eighty per cent of the granule cells beneath a
particular Golgi cell are inhibited, via at least one of
their four dendrites}, by that Golgi cell.

The minimum value ga for the number of Golgi cell
axons Is then given by the equation

0.20 = { 1 10\« 3

TN 17000/ (3)
This leads to
17 000

g~ In(0.2) ~ 7000. (4)

In the simulation each Golgi cell was therefore
constructed with between 6000 and 8000 axons, distri-
buted randomly within 275 pum of the cell body.
Pellionisz & Szentagothai (Ito 1984) estimated
4800 axons, which is of the same order as our figure.

(ix) Contacts on the ascending dendritic tree

This tree contacts the parallel fibres. Since the
parallel fibres are much longer than the diameter of
the Golgi dendritic tree, its width rather than its area
is relevant. If 200000 parallel fibres intersect the
dendritic tree of a Purkinje cell which is 250 pm wide,
then 440000 will intersect the ascending Golgi dendri-
tic tree, which is 550 pum wide. The only data to
suggest the number of ascending dendrites come from
the various observations that there are more ascending
then descending dendrites. We assumed, in line with
Marr, that each Golgi cell samples approximately
109, of the parallel fibres passing through the dendri-

I Although there are on average 4.5 dendrites per granule cell, they
are not very wide ranging and herc we have assumed that an
average of about four dendrites per granule cell will fall inside the
Golgi cell area.
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tic tree, and each Golgi cell was therefore given a
random number of ascending dendrites, chosen from
the range 35000-53 000. The parallel fibres that were
contacted were chosen at random.

This concludes the description of how the static
structure was generated in the computer simulation.
The rest of this section describes how the structure is
used.

(b) Node characteristics

All the synapses, except the modifiable ones
between the parallel fibres and the Purkinje cell, are
assumed to have unitary weights.

(1) Golgi cells

These are assumed by Marr to make two estimates
of the average excitation received by the granule cells
from the mossy fibres, which can be thought of as the
number of cells that would fire in the absence of
inhibition. Marr assumed that the higher of these two
estimates is taken to determine the amount of inhibi-
tion to be applied. We had to modify extensively his
suggestions as to how such a scheme might work. He
had assumed one-to-one Golgi to granule cell connec-
tions within the smaller, hexagonal, non-overlapping
Golgi compartments, which is biologically unrealistic.
Our proposal is as follows: the estimate obtained by
the ascending system of Golgi cells is obtained directly
by measuring the proportion of the parallel fibres that
this cell contacts that are active. The estimate sup-
plied by the descending system is obtained by measur-
ing the proportion of the mossy fibres contacted that
are active, and this estimate is then multiplied by a
constant factor representing the mean number of
dendrites per granule cell. Both values include an
influence from ‘external’ sampling which could be up
to 5%, different from the internal estimate.

The amount of inhibition supplied by a single Golgi
cell is then calculated as

I=/E+fo (3)

where E is the larger of these two estimates of parallel
fibre activity (in line with Marr’s suggestion) and f;
and f, are two constants whose values are obtained
empirically so as to give a good mapping between the
mossy fibre excitation values and the final (inhibited)
granule cell excitation values.

(ii) Criteria for a good mapping

It is desirable to keep the average cxcitation of the
granule cells after inhibition as low as possible so as to
maximize the capacity of the net. Marr suggested that
the target excitation should be about 19,. However,
the more a granule cell pattern is reduced by inhibi-
tion, the less information from the original mossy
pattern carries through and the more likely it is that
two initially different granule cell patterns will get
inhibited down to the same post-inhibitory granule
cell pattern and so be impossible to discriminate
between. Also, a desirable mapping will map mossy
fibre patterns with higher than average excitation
onto granule cell patterns with a similar higher than

Phil. Trans. R. Soc. Lond. B (1992)

average excitation so as to minimize the information
lost; similarly for patterns with lower than average
excitation.

After some tests, we decided on an average target
excitation of just over 1.0%. This figure gave the
optimum balance between the factors of needing low
excitations so as to increase the capacity and needing
high excitations so as to avoid confusion of patterns.

(ii1) Granule cells

These sum their excitatory inputs (from the mossy
fibres) and inhibitory inputs (from the Golgi cells),
and fire if the result is greater than zero.

(iv) Purkinje cells

These sum their excitatory inputs (from the parallel
fibres) and their inhibitory inputs (from the basket
and stellate cells), and fire if the result is greater than
Zero.

(v) Basket and stellate cells

These are presumed to sum the excitation coming
through their dendritic connections with parallel
fibres and then to send a proportionate inhibition to
the Purkinje cell. The function computed by these
cells is not modelled explicitly. It is assumed that to
each Purkinje cell they furnish inhibition of magni-
tude

I=(fs x P)/Kgs, (6)

where P is the total excitatory input from the sampled
parallel fibres (and so varies with different input
patterns), Kps is a constant which is equal to the ratio
of the number of parallel fibres sampled by a basket or
stellate cell to the number of parallel fibres sampled by
a Purkinje cell, multiplied by the number of basket
and stellate cells inhibiting a Purkinje cell. f3 is a
constant of value slightly less than 1.0, its value being
obtained empirically, as explained below. In this way,
each Purkinje cell will receive an inhibition (summed
over many basket and stellate cells) which is just less
than the total excitation in the parallel fibres. This
will result in the Purkinje cell only firing when the
vast majority of excited parallel fibres have activated
synapses. Adjusting the value of f3 adjusts the accept-
able difference from a learned pattern in order to still
respond to it.

(¢) Rules for weight changes

The only synapses at which learning is assumed to
occur are those between the parallel fibres and the
Purkinje cells (Marr 1969). These all have a weight of
zero initially and then are increased to a weight of one
when both the presynaptic (granule) and post synap-
tic (Purkinje) cells are excited (Hebb 1949).

5. SIMULATION RESULTS
The simulations that were carried out had three aims.

1. To establish the values of the parameters that
were not yet specified. Principally, these are the values
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of fi and fs, for determining the inhibition to be
applied by the Golgi cells and that of f5, which is
needed for setting the threshold on the Purkinje cells
in discrimination mode.

2. To see if the implementation of Marr’s theory
would work at all, and if so would work in the manner
which we envisaged. In particular, we wanted to test
the extent to which recoding of the mossy fibre input
into the granule cells, together with inhibition by the
Golgi cells, would improve performance by increasing
the capacity of the net while at the same time
minimizing the recognition of subsets and similar
patterns.

3. To determine, using simulations, the capacity of
Marr’s model (or at least the adaptation of it which
was deemed necessary in the light of the anatomical
constraints that he did not consider), with the perfor-
mance he calculated analytically for the original
model.

(a) Preliminaries

In all the tests described below, each mossy fibre
pattern was presented to be learned more than once,
to simulate the effect that differing amounts of
external excitation can have on the inhibition sup-
plied by the Golgi cells. Each mossy fibre pattern was
presented to be learned nine times, with external
excitations differing from the internal figures by
-5.0%, —3.75%, —25%, —1.25%, 0.0%,
+1.25%,, +2.5%, +3.75% and +5.09%,.

Marr suggested that between 0.3%, and 309, of the
mossy fibres may be active in any one event; we used a
narrower range of between 29, and 209%,. Therefore
the term ‘random mossy fibre pattern’ below refers to
a pattern in which the individual fibres are randomly
turned on with a probability randomly chosen
between 2 and 209%,, which is kept constant for all the
fibres of that pattern.

The simulations were written in C and run on a
Sun-4 workstation, rated at 12 MIPS and with 24
Megabytes memory. Generation of the structure took
50 h of cpu time. It took approximately 2 min of cpu
time to perform the calculations for a single presen-
tation of a mossy fibre pattern, in both storage and
discrimination mode. The step that took the most
computer time was the computation of the inhibition
supplied by the Golgi cells.

(b) Mossy fibre to granule cell mapping

The first tests look at the mapping from the mossy
fibre pattern to the inhibited granule cell pattern to
see how well the Golgi cells are able to regulate that

mapping.

(1) Golgi cell sampling of parallel fibre excitation

Figure 16 shows the accuracy of the Golgi cells in
sampling the activity in the parallel fibres. The
estimates are usually too high because the cells use the
higher of the two estimates from their dendritic fields.
Despite the effect of this error and also of the error
from the sampling of external cells, it can be seen that
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Figure 16. Golgi cell estimation of what the average activity
o, of the granule cells would have been without inhibition by
the Golgi cells, versus an exact calculation of what it would
have been.

the Golgi cells still estimate the parallel fibre exci-
tation to within 59,.

(i1) Mossy fibre to granule cell mapping

The values of the constants f; and f; in equation 5,
which determine the amount of Golgi cell inhibition
as a function of the estimated level of granule cell
activity before inhibition, were determined empiri-
cally to be 2.25 and 0.60. Figure 17 shows the result of
the Golgi inhibition. As can be seen, the average
granule cell activity after inhibition is & 1.0%, and
there is a roughly monotonic relationship between
granule cell activity o, and mossy fibre activity o,,.
The slight ‘saw-tooth’ effect is due to the fact that
Marr assumes integer values in the granule cells,
whereas the Golgi cell inhibition is necessarily ana-
logue.

Note that for 13000 mossy fibres and 200 000 paral-
lel fibres, the conditions in § 34 give rise to the two
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Figure 17. Golgi cell regulation of the granule cell activity
level (o). The lower dotted line (circles) corresponds to the
first condition of § 34, thc upper dotted line (triangles) is the
second condition of § 3d.
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Figure 18. Variation in granule cell patterns from the same
mossy fibre pattern (due to different Golgi cell inhibition).
The frequency measures how often two granule cell (cc)
patterns with the relevant difference measure are generated
from the same mossy fibre pattern. The difference measure is
the number of granule cells at which activity differs divided
by the mean number of active granule cells in the two
patterns (see § 3d).

dotted lines in figure 17. As can be seen, the
relationship between o, and «, is properly balanced
between the two criteria.

The variation in the granule cell patterns due to a
varying external Golgi cell input (for the same mossy
fibre pattern) is shown in figure 18. It is seen that
about 509, of the granule cell patterns are less than
39, different from each other, whereas about 909, are
less than 89, different. There was a variation of up to
+59, in the external mossy fibre and granule cell
excitations.

In § 3¢ it was hypothesised that another property of
the mossy fibre to granule cell complex connections
would be that two similar mossy fibre patterns would
produce two granule cell patterns which are less
similar. Figure 19 shows that this does indeed happen.
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Figure 19. Expanding the difference between pairs of input

patterns as they pass from the mossy fibres (MF) to the
granule cells (cc). 6, is seen to be always greater than 0,.
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(¢) Basket and stellate sampling of the parallel
fibre excitation

These cells were only modelled implicitly and their
behaviour is highly dependent on the assumed differ-
ence between internal and external excitations (figure

20).

(d) Discrimination mode

Calculating the capacity of the net involves two
steps: (i) calculating the value of f3 (by fixing the
acceptable error rate for recognition of learned con-
texts); and (ii) calculating the capacity of the net (by
fixing the acceptable error rate for recognition of
unlearned contexts).

Both error rates are set to be 19, in accordance with
the figure adopted by Marr. Thus 19, of learned
contexts are not responded to, and 1%, of unlearned
contexts are responded to.

In the first step, the value of f3 is found empirically
by storing in the net 540 patterns (sets of the nine
variants of 60 basic patterns) and then finding the
highest value of f3 for a 1%, error rate. This yielded a
value of f3=0.935.

(i) Capacity

Once the value of f3 was set, the capacity of the net
is then determined in the second step by finding how
many contexts can be stored before the acceptable
error rate of 19, is exceeded for unlearned patterns.
As figure 21 shows, the full net was found to have a
capacity of between 60 and 70 contexts. After having
learned 60 associations, 22.8%, of the parallel fibre to
Purkinje cell synapses had been modified. The pur-
pose in stating the capacity we found is not so much to
give a realistic estimate of the capacity of the cerebel-
lum as to show that each Purkinje cell can plausibly
be expected to store many associations (i.e. that it is
feasible that the Purkinje cell is the equivalent of an
output line in an associative net).
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Figure 20. Basket and stellate cell estimation of the average
excitation of the granule cells (,) versus the true value of a,.
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% subsets responded to

10 20 3 4 5 6 70
% of original neurons still active in subset

Figure 22. Recognition of subsets of learned patterns.
Percentage of subsets erroncously recognized versus the
percentage of the original learned pattern remaining in the
subset.

(ii) Responding to subsets and discriminating between similar
patterns

In § 3¢ it was hypothesized that one property of the
mossy fibre to granule cell complex transformation
would be to ‘scramble’ input patterns so that subsets
of learned mossy fibre patterns were not automatically
responded to. Figure 22 shows that subsets of learned
patterns in which fewer than 709, of the neurons
originally active were still active hardly ever elicited a
response.

Figure 23 shows how many false positives (incorrect
responses to unlearned patterns) occur when the input
patterns are similar to already learned ones. The
figure shown is the result of presentation of 1000
patterns.

In both tests, the results depend on how many
synapses have been modified (how many associations
have been learned) and also on the value of /3 in § 44,
which specifies the tolerance for patterns that are
similar to learned ones. In both cases, 60 associations
had been learned and a value of 0.935 was used for f;.
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Figure 23. Recognition of patterns similar to ones already
learned. Percentage of similar patterns erroneously recog-
nized versus a measure of their difference from the learned
pattern. The measure of difference (6,) is the number of
mossy fibres at which activity differs divided by the mean
number of active mossy fibres in the two patterns. The bar
shows the expected range of values of 6, for pairs of
randomly chosen patterns with activity ranging from 0.02
to 0.2.

(iii) Comparisons with a simpler structure

The most important advantage postulated for the
mossy fibre to granule cell set of synaptic connections,
together with the Golgi cell inhibition, is that of
increasing the capacity of the net. To test this we
compared the capacity of the full net of figure 4 with
that of a comparable net but without granule and
Golgi cells, so that mossy fibres synapse directly onto
the Purkinje cells and the basket and stellate cells
sample the mossy fibres. The second net is the
biological equivalent of the standard associative net of
figure 8.

As already described, the highest value of f3 for the
full net, that obtained a 19, error of omission, was
0.935, resulting in a capacity of 60-70 contexts.

For the simplified system, a 19, error rate for
response to learned input patterns led to a value for f3
of 0.92, and an identical error rate for response to
unlearned input patterns led to a capacity of x~15
contexts (see figure 21).

This demonstrates that the complex expansion from
mossy fibres to granule cells, together with the
subsequent inhibition by the Golgi cells, does increase
the number of associations that can be stored and
retrieved reliably by the network. This is mainly
because the expansion to a larger set of granule cells
allows more sparsely coded patterns.

6. DISCUSSION

In the introduction we stated that this work consisted
of three main parts: a concise but clear explanation of
Marr’s theory of the cerebellum, a description of how
to simulate the neural structure of the cerebellum, and
some insights into Marr’s theory gained by forcing it
to be implemented in our simulation. In this discus-
sion we summarize these three parts and then proceed
to make a claim about the importance of Marr’s ideas.


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Cerebellum: simulation and Marr’s theory 'T. Tyrrell and D. Willshaw 255

(a) Explanation of Marr’s theory

(1) Functions of the different cells

In §3 we explained Marr’s ‘theory of cerebellar
cortex’ by means of an extended analogy with the
associative net. The different cells in the cerebellum
were compared with the following parts of the
extended associative net: (i) mossy fibres: first layer
input lines; (ii) granule cells: second layer input lines;
(1) Purkinje cells: output lines; (iv) climbing fibres:
‘teacher’ lines;(v) basket and stellate cells: threshold
setters; and (vi) Golgi cells: regulators of second layer
input activity.

It was also hypothesized in §3, and shown as
reasonable in § 5, that the existence of the Golgi and
granule cells and the complex mossy fibre to granule
cell connections can be explained by the need to
improve the performance of the basic associative net
in three ways: capacity, rejection of subsets, and
rejection of similar patterns.

(i1) General problems with Marr’s theory

Up to this point the only drawbacks to Marr’s
theory that we have discussed have arisen out of the
problems we encountered in trying to map Marr’s
fairly mathematical model onto our simulated neuro-
biology. It is worth mentioning here that there are
other, more general, problems with his theory.

1. Associations cannot be unlearned. Because the
synapses in the model can only be turned on, associ-
ations between input and output can never be over-
riden. A situation—action link, once formed, must then
remain in place for ever.

2. Binary synapses do not allow for a very refined
sort of learning. Marr’s theory presupposes that the
type of learning that we want from the cerebellum is a
sort of ‘photographic recognition’, whereby an input
pattern is only recognized if nearly all its constituent
elements (analogous to ‘pixels’) are exactly the same
as in the learned ‘photo’. There is no possibility of any
learning in which certain portions of the input can be
effectively ignored as not relevant, whereas others can
be given greater importance if they are more signifi-
cant in deciding whether the context should be
recognized.

To illustrate this concept, consider a Purkinje cell
which is responsible for the control of a muscle that
causes the arm to flex at the elbow, and for which two
parts of the input consist respectively of information
about the degree of rotation of the elbow and
information about the degree of flexion of the ankle (if
two such inputs would indeed converge on the same
Purkinje cell). In this case, the latter part of the mossy
fibre context would not be very relevant to any
decisions about whether the Purkinje cell should fire,
whereas the former part of the mossy fibre context
would be of considerable importance. Marr’s learning
rules, involving only binary weights on the parallel
fibre to Purkinje cell synapses, are not able to produce
varying emphasis on the different parts of the input.

3. In general, Marr’s use of binary synapses and
integer excitations is biologically dubious. Albus
(1981) comments:

Phil. Trans. R. Soc. Lond. B (1992)

Neurons are not binary devices, and the brain is not a
digital computer. The all or nothing character of the
action potential does not mean that the neural signal is
a Boolean variable. The action potential is simply an
encoding mechanism that the brain uses for transmit-
ting analog variables over long distances.

4. Experimental evidence seems to suggest that
synaptic values start off high in the cerebellum and
are then decreased with the conjunction of parallel
fibre and Purkinje cell activity (Gilbert & Thach
1977), rather than being increased from low to high,
as assumed by Marr. The Purkinje cell may learn
when to pause its inhibition (to ‘disinhibit’) rather
than when to fire.

Although the problems just outlined should make us
feel sceptical about some of the details of Marr’s
theory, they should not make us feel too dubious
about the more fundamental aspects of Marr’s theory
(that the cerebellar cortex associates patterns in its
input with patterns in its output, and that the
component cells function as outlined in § 6a(i)). The
basic associative net can be modified to work with
analogue excitations and synapses, and different
synaptic rules which involve depression as well as
potentiation of synapses can be used (Albus 1971).

(b) Simulating the cerebellum

We have demonstrated a simulated full-size model
of what is generally thought of as the building block of
cerebellar circuitry: the cells and synaptic connections
associated with a single Purkinje cell. In our model
most of the cells and processes could be represented
explicitly and in a form that captures their spatial
arrangement. In particular, the model reproduces the
probabilistic aspects of cerebellar structure. Cells are
positioned stochastically and have varying numbers of
dendritic and axonal connections which are positioned
randomly around the cell body.

The simulation consisted of a population of 13000
mossy fibres that innervate 200000 parallel fibres
under the regulation of 100 or so Golgi cells. The
parallel fibres then synapse with a single Purkinje cell.
The parallel fibres also pass excitation to the Purkinje
cell by way of 40 basket and stellate cells. The
Purkinje cell also receives input from one climbing
fibre.

We have used this simulated structure to show how
it can embody the Marr theory of the cerebellum as
an associative learning device. More generally, this
model can be regarded as a simple building block for
associative memory. But when it is applied to other
structures the way it will work in detail will depend
heavily on the specific numerical relationships of the
structure under consideration.

It will be possible to use this structure to test out the
performance of other proposed models of the cerebel-
lum. A case in point is that based on the theory due to
Albus (1971), whereby Purkinje cells are to be taught
by error correction. In this theory, synapses are
analogue rather than digital, and the proposed learn-
ing mechanism involves depression of parallel fibre
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synaptic weights rather than strengthening, as well as
modification of the parallel fibre to basket and stellate
cell synapses.

Even in a model of this precision, the values of
many of its parameters had to be guessed. Given the
current state of techniques, it is possible that many
missing pieces of neuroanatomical data can now be
obtained. Particularly helpful would be more exact
estimates of the following parameters: (i) the size and
shape of Golgi cell processes; (ii) the numbers of mossy
fibres synapsing onto each Golgi cell’s descending
dendrites; (iii) the numbers of parallel fibres synapsing
onto each Golgi cell’s ascending dendrites; (iv) the
numbers of granule cell dendrites contacted by each
Golgi cell’s axons; (v) the number of parallel fibres
synapsing onto the dendrites of each basket or stellate
cell; and (vi) the average number of mossy fibre axon
terminals in each cluster.

(c) Insights into Marr’s theory

When we implemented Marr’s theory in our simu-
lation of the cerebellum we encountered some places
where Marr’s neuroanatomical assumptions clashed
with what is now known. A general comment is that
although Marr’s implementation was spelled out in
much detail, in some respects it was found to be
inadequate.

1. A representation of the mossy fibre — granule
cell - Purkinje cell pathway was made that is self-
consistent, relies on plausible assumptions for cases
where data is unavailable and can be seen to be a
natural implementation of Marr’s basic idea. One
place in which our interpretation differs from that of
Marr is that we found that physical constraints dictate
that the 6000 mossy fibres known to influence one
Purkinje cell directly be increased by edge effects to
13000 rather than to 7000, as suggested by Marr.

2. Marr’s interpretation of the anatomy of the
Golgi cells contravenes many pieces of anatomical
data and seems to be biologically untenable. In our
model, Golgi cells sample mossy fibres that are outside
the 13000 leading to the given Purkinje cell. This
means that the same' mossy fibre pattern will, at
different times, cause activity in slightly different
populations of granule cells. It has the implication
that there is a stochastic element in the mossy fibre to
granule cell transformation, in contrast to Marr’s
assumption that a given mossy fibre input to a
Purkinje cell should be carried there by parallel fibre
activity which is determined by that input alone.

(d) The importance of Marr’s theory

As has just been discussed in §§ 6a(ii) and 6¢, there
are problems with some of the details of Marr’s
theory. However, none of these problems is fatal to the
fundamentals of the theory. We should not look to
Marr for an exact prescription as to how the cerebel-
lar cortex works, but yet we should note the plausibi-
lity and aptness of the analogy with the associative net
and the functions he ascribes to the different cell types.
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No other theory links the structure and function of the
cerebellum in such a convincing and explicit fashion.

Some vyears after having written his “Theory of
cerebellar cortex’, Marr himself said ‘I shall be very
surprised if my 1969 [cerebellum] or 1971 papers turn
out to be very wrong.” (Vaina 1991). Thach recently
commented ‘Certainly some elements of Marr’s work
may require modification. Yet, a growing number of
network theoreticians and experimental neuroscien-
tists appear to like the ideas, and to anticipate their
being proven to be essentially and substantially cor-
rect.’” (Vaina 1991). We agree.
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(Programme Grant no. PG8514914).

REFERENCES

Albus, J.S. 1971
Biosci. 10, 25-61.

Albus, J.S. 1981 Brains, behaviours and robotics. BYTE
Publications. Lawrence Erlbaum Associates.

Baron, R.J. 1987 The cerebral computer.

Braitenberg, V. 1961 Functional interpretation of cerebel-
lar histology. Nature, Lond. 190(4775), 539-540.

Carlson, N.R. 1977 Physiology of behaviour. Boston: Allyn
and Bacon.

Changeux, J.-P. 1985 Neuronal man — the biology of mind.
Oxford University Press.

Churchland, P.S. 1986 Neurophilosophy: toward a unified
science of the mind[brain. Massachusetts Institute of Tech-
nology Press.

Eccles, J., Ito, M. & Szentagothai, J. 1967 The cerebellum as
a neuronal machine. Berlin: Springer—Verlag.

Fox, C.A., Hillman, D.E., Siegesmund, K.A. & Dutta, C.R.
1967 The primate cerebellar cortex: A Golgi and electron
microscope study. Prog. Brain Res. 25, 174-225.

Fujita, M. 1982 Adaptive filter model of the cerebellum.
Biol. Cyber. 45, 195-206.

Gilbert, P.F.C. 1974 A theory of memory that explains the
structure and function of the cerebellum. Brain Res. 70(1),
1-18.

Gilbert, P.F.C. & Thach, W.T. 1977 Purkinje cell activity
during motor learning. Brain Res. 128, 309-328.

Gilman, S., Bloedel, J.R. & Lechtenberg, R. 1981 Disorders
of the cerebellum. F. A. Davis Company.

A theory of cerebellar function. Math.

Hebb, D. 1949 The organization of behavior. New York:
Wiley.
Ito, M. 1982 Mechanisms of motor learning. In Competition

and cooperation in neural nets. Berlin: Springer—Verlag.

Tto, M. 1984 The cerebellum and neural control. New York:
Raven Press.

Kanerva, P. 1984 Self-propagating search: a unified theory of
memory. Centre for the Study of Language and Informa-
tion, Stanford University.

Kohonen, T. 1978 Associative memory. Berlin: Springer-
Verlag.

Lippmann, R.P. 1987 An introduction to computing with
neural nets. JEEE ASSP Mag. 3(4), 4-22.

Llinas, R.R. 1973 The cortex of the cerebellum. Scient. Am.
232(1), 56-71.

Marr, D. 1969 A theory of cerebellar cortex. J. Physiol.
202, 437-470.


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Cerebellum: simulation and Marr’s theory

Marr, D. & Blomfield, S. 1969 How the cerebellum may be
used. Nature, Lond. 227, 1224-1228.

Palay, S.L.. & Chan-Palay, V. (eds)
new vistas. Berlin: Springer-Verlag.

Pellionisz, A. & Llinas, R. 1982 Tensor theory of brain
function: the cerebellum as a space-time metric. In
Competition and cooperation in neural nets (ed. S. Amari &
M. A. Arbib), pp. 394-417. Berlin: Springer-Verlag.

Pellionisz, A.J. 1986 David Marr: A theory of the cerebel-
lar cortex. In Brain theory (ed. G. Palm & A. Aerten),
pp. 253-257, Berlin: Springer-Verlag.

Steinbuch, K. 1961 Die Lernmatrix. Kybernetik, 1, 36-45.

Szentagothai, J. & Arbib, M.A. 1975 Conceptual models of
neural organization. Massachusetts Institute of Technology
Press.

1982 The cerebellum:

Phil. Trans. R. Soc. Lond. B (1992)

T. Tyrrell and D. Willshaw 257

Thompson, R.F. 1990 Neural mechanisms of classical
conditioning in mammals. Phil. Trans. R. Soc. Lond. B 329,
161-170.

Vaina, L.M. (ed.) 1991 From the retina to the neocortex: selected
papers of David Marr. Birkhauser.

Willshaw, D.J. 1971 Models of distributed associative memory.
Ph.D. thesis, University of Edinburgh.

Willshaw, D.J., Buneman, O.P. & Longuet-Higgins, H.C.
1969 Non-holographic associative memory. Nature, Lond.
222(5197), 960-962.

Recetved 7 November 1991; accepted 21 January 1992


http://rstb.royalsocietypublishing.org/

